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The formulation of the problem of nonisothermal gas lubrication on 
the basis of the Reynolds equations is given in [1,2],  together with 
some solutions to this problem. Of practical and theoretical interest is 
the case in which external magnetic and electric fields are present and 
the lubricating medium is electrically conducting. A rigorous formu- 
lation of this problem for an incompressible conducting fluid has been 
given by Shulda [8], and for an isothermal gas film byConstantinesku 

[4], who also obtained a number of quantitative estimates. 
In the present paper, the problem of three-dimensional nonisother- 

real electrically conducting gas lubrication in the presence of a trans- 
verse magnetic field is formulated, and basic characteristics of the 
problem are examined. 

Assume we have a gas film, a portion of which is schematically 
shown in Fig. 1. The surface situated in the plaue x0z moves at a con- 
stant velocity U in direction of the x-axis, while the surface opposite 
to it is at rest. Neither surface is electrically conducting. An electri- 
cal conductivity o of the lubricating gas is provided for by some means 
(influence of radiation, introduction of ionizing additions, etc. ); we 
assume that o = const. 

The entire system is situated in an external magnetic field H 0 which 
is oriented along the y-axis. Only cases with small magneticReynolds 
numbers Rm where the induced magnetic field may be neglected (con- 

sidering H - H 0 = const) will be treated. 
We introduce dimensionless designations for the gas velocity com- 

ponents u, v, and w, the density p, the temperature T, and the pres- 
sure p. The values at the surface xz and the pressure P0 at a certain 
line parallel to the y-axis are selected as the scales. The length scale 
in the x- ,  and z-directions is the characteristic dimension of the gas 
bearing l ,  and the scale in the y-direction is the mean thickness of the 
clearance h0. 

In addition, we Introduce the generalized dimensionless quantities 

P - -  [zcp M =  U 
X ' V'n--~o ' 

A =  U~ol G = h~eH ~ , 
he2po ' 

where P is the Prandtl number, M ls the Mach number, A is the char- 
acteristic value of the gas bearing, and G is the Hartmann number. 

In [1] it was shown that if the value of a = (x -1)  Pr M z is SmaLl 
and the viscosity coefficient and temperature are governed by a power- 
law relation, then, in the approximation of gas lubrication theory (the 
hydrodynamic Reynolds number Re = 0 (1), (h0/g) z << 1), the energy. 
equations lead to an expression for the temperature 
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(1) 

Fig. 1. 

where X is the constant temperature ratio of the moving and fixed sur- 
faces, and n is the exponent in the power-law relation between viscos- 
ity and temperature. Turning to the magnetogasdynamic problem, it is 
not difficult to see that the ratio of the term which characterizes Joule 
dissipation to the principal term associated with thermal conductivity 
in the energy equation is proportional to the quantity 

= (x-- I) PM2G ' .  

Consequently, when the parameter ~ is small, Joule dissipation 
does not affect the temperature, and expression (1) continues to hold. 
The following considerations will deal specifically with this ease. 

Having thus eliminated the need for analyzing the energy equation, 
the analysis may be limited to the equation of state, threeprojections 
of the equations of motion, and the continuity equation. 8y introduc- 
ing the additional assumption that the lubricating medium is a perfect 
gas, we get 

• 0 / n OU\ i Op 
p = - r  pr, ~ ~r ~ ) -  G,~ - A o 2 ,  

, o ,  
Oy = 0 '  ~ T - -G2u '~  A Oz ' 

O(pu) , 0(pv) 4 - ~ = 0 .  (2) 

As already stated, the case T = const was studied in [4,fi] and, there- 
fore, will not be considered. In the case of a variable temperature 
within the lubrication film, i.e., for • # 1, Eq. (1) yields a single- 
valued relationah/p T = T(y) for a fixed h (fixed values of x and z). 
Because of this, one may change in the equations of motion from the 
variable y to a new independent variable T. In this case, we have 

a--{ --aT "Oy - (.+i)------~ (x + ~ =  

_ x n+1- t n O 
-- ~n-~ l)h T- OT ' 

O O 0 OT O 0 O OT 
Oz - -  O~ + ' ~  Oz ' Oz - -  Oz + ~ Oz " 

The quantities OT/Ox and OT/Oz are assumed to be finite. Under 
this assumption, system (2) is transformed as follows: 

x - - I  O~u hg (n -4- t)2 T n u ~  
p = - " ~ - p T ,  ~ - ~  -- Gt (Xn.t _ t) ~ 

I Op h~(n-~t)  z n Op 
= - - T  ,~=0 A Ox (X~t _ 1)' 

02W __G z h 2(n + 1 )  ~ Tn w = _ ~  Op h'(n + i)  ~ 
OT2 (X '~§ -- t) - - - ' - - ~  "~- (X TM -- 1)' T", 

a(pu) , o(pv) #(pw) 
oz -~ ~ + --gT--z = o. (3) 

The first step of the solution reduces to the integration of the sec- 
ond and fourth equations in (3), i .e. ,  to the representation of the vel- 
ocities u and w in the form of expressions which contain the pressure 
derivatives 0p/0x and 0p/0z. The equations for u and w have asimilar 
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structure. A solution of one of them is 

02tt _ _ G 2  t % 2 ( n - ~ l ) 2  1 0 p  h 2 ( n 4 - l )  2 T n .  ( 4 )  
Ol '--'T ( x n ' i - - l )  ~ Tnuq" A Ox (xa+l-- lff  

Because the quantities p and h depend only on x and z, the equa- 
tion lends itself to integration over one independent variable, namely 
T. The equation is linear and, hence, the general solution is the sum 
of the general solution without the right-hand side and the particular 
solution with the right-hand side. It is well known (see, for example, 
[6] ) that the solution of an equation of this type without the right-hand 
side can be expressed in 8essel functions in the form 

- (  2 h ( n + l )  n+,) i 
u(~ ~T-~2 G (X . . . .  i) T~-" v ' - -  n + 2  " (5) 

In formula (5) Z v denotes a linear combination of Bessel functions 
of a purely imaginary argument 

z~ (U = cJ~  (O + c~C~ (~), 

n+2 
~=2c; (.+~)h . . ~ T  

(n + 2)(X,-J--1)  �9 (67 

With the aid of the method of varying the constants, and by using 
the expression for the WronsMan of a complex of fundamentalsolutions 
of the modified Bessel equation [7J 

2 sin vn 
] j  (~) C~ (~)-- ~ ( O z _ / ( ~ i )  = ~ , 

together with a related expression 

2 sin vn 
li_ v (~) I.~ (~) -- Iv_ I (~)I_.~ (~) = -- z~ , 

it is possible to obtain also a particular solution of Eq. (5) with the 
right-hand side. As a result, the general solution of equation (37 with 
respect to u and w takes the form 

= lf~[fi @, z) I~ (~) +/~ (~, z) l_~ (UI  - G~A a:~, ' 

1 Op 
w =  V;f[/~(~, z ) C ( U + h ( z ,  z) ~_~(~)l -- OA o~ �9 (7) 

The arbitrary functions ~ ,  ]~, fs  and fa are determined from the 
boundary conditions. For the temperature and the velocity components, 
these boundary conditions have the form 

T = t ,  u = t ,  v = m = 0  for y = 0 ,  

T =  X, u ~  v =  w = 0  for y =  h. (8) 

From formula (6), we have 

(n + ~) h 
~ = ~ o ~ 2 G ( n  ~ 2)(Xn+x__t) for y=O, 

= ~oX '/~(n+~) for y = h.  (Sa) 

From Eqs. (87 and (Sa), we get 

1 [  ' 1 a P e  ] / ~ = - ~  ,~-~ (z~o)+ c,-~x ~ _~j, 
1 [ ~ 1 OP c ' ]  

l 1 

1 r 

C+ v ~ I_+ ~ (Z2~o) -- X ~ I +  ~ (~o)- (9) 

The second step of the solution involves the substitution of expres- 
sions (7) into the continuity equation, i.e., the last equation in system 

(3), which can be more conveniently represented in integral form: 

IL h 
0 / ~ u \ O ! w ) x  ~ ' ( ff;'dy = 0  (10) 

Integration of the functions u/T and w/T,  obtained from (7), can 
be simplified by introducing the substitution 

h ( n + t )  t 
dy ~ xn. ,  -- 1 TndT ~ "G TZd~ " 

Transformation of Eq. (107 into an equation for determining the 
preSsure involves introduction of certain integrals of the form 

k 

D• ,, (~) = I ~ - 3 v +  ~ (~) d~, (II) 

which do not lend themselves to analytical representation. Here, a is a 
constant which is not equal to any of the values of b or • but 
which is close to one of these quantities in order of magnitude. Let us 
also introduce the notation 

1. 

B• ~ --  D= v (X 2v~o) -- D• v (F,o). (127 

By using, in addition, the previously introduced quantities A v and 
C• the above equation can be written in the form 

0 f f  o.~_ i f I Op [B-vCv--B~C-v 

1--2v 

2( , -2 . ) (  26(,-,~h ~-~:~- ,)] + 
1. 1 

a 3v-i 8p B C v - B v C  ,, 

2 ( t - - 2 v ) ~  X(1-~)/v_l (X " --  ) = 0 .  (i~7 

ff the subscript v is known (or, which is the same, if the exponent 
n in the power-law relation between viscosity and temperature is 
known, and the Hartmarm number G, the characteristic value A of the 
gas bearing, and the temperature ratio of the surfaces, • are all 
known, then for a certain function h(x, z) which characterizes the 
shape of the clearance, and for certain boundary conditions, it is pos- 
sible, from Eq. (13), to determine the pressure p at any line parallel 
to the y-axis. It can be shown that in the limiting case G--~ 0, Eq. (13) 
coincides with an analogous equation in nonisothermal gas lubrication 
theory [ l j .  

As has been shown [1,2],  the solution of Eq. (13), even in the 
simple case G = 0, is realized by numerical methods or with the aid of 
various simplifications. This is all the more true for G ~ 0. 

Of interest is a specific feature of the behavior of the pressure in 
the case A--~ ~o, which derives from Eq. (13). In cases in which G = 0 
and G ~ 0, but where • =1 (see[5]), the passage to the limit A ~ .o 
leads to the condition 

p h =  const. (147 

Equation (137 shows, however, that in a nonisothermal gas film 
with a finite Hartmann number, the asymptotic condition (14) no 
longer holds. It is replaced by an appreciably more complex condition 

I I 

B_~I v (X2V~o) -- B vl , (X2v~o) 
p ,  3v- I  ~ c o n s t .  

A v ( 1 5 )  

As can be seen from formulas (97, (11), and (127. the quantities A v 
and Biv contain certain combinations of Bessel functions of a purely 
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imaginary argument and of integrals which incorporate such functions, 
but which cannot generally be represented in analytical  form. Further- 
more, the tabular form of the functions I~v (~) thermelves is known 
only for certain discrete values of the exponent n (for example,  n = 1, 
which corresponds to v :: 1/3). One of the simpleSt ways of solving Eq. 
(13) in the general case of an arbitrary u, however, involves repre- 
sentation of the Bessel functions I~u (~) in convergent power series [7] 

. . . .  t (s 
l+~(~)=~rlF(l+r• �9 

r=0 (16) 

By using series (16), the quantities Ay and C~v, defined by formu- 
las (9), can be easily calculated for any value of v = (n + 2) -1. By 
substituting these series into the intcgrands of formulas (11), we obtain 

D• = 

= 2 ~ - ~ = o  r!('Zr~2--3v:~v) r(i+r:J:v)\T} [~" (17) 

Evaluating the right-hand sideS of formula (17) with the requited 
accuracy, and using (12), it is not difficult to find B:w and to obtain 
all data for solving Eq. (13). 

All the considerations we have made refer to condition (15), which 
defines the asymptotic behavior of the pressure in an nonisothermal 
conducting gas film at finite Hartmann numbers. In [5] it is indicated 

3 p  

I 
2 

n:0.75 ~ --..,. <~ 

2 
Fig. 2. 

3~ z g~c 

that the carrying capacity of an isothermal bearing can be either in- 
creased or decreased by varying the direction of the H0 vector and the 
value of the Hartmarm number; undoubtedly, this thesis holds also for 
a nonisothermal bearing. However, the quantitative aspect of this ef- 
fect was not examined.  On the other hand, a practical example was 
computed in order to evaluate the asymptotic behavior of the pressure. 
The parameters chosen were: n = 3 /4 ,  (v = 4/11),  X = 2, the eccen-  
tricity of a radial bearing ~ -- 0.B, and a Hartmarm number G = 2.785. 
As can be seen from Fig. 2 (which shows the pressure distribution curves 
at A ~ .o for the given value of G and for G = 0), the difference in the 
behavior of these curves is fairly substantial. This indicates that the 
behavior of the flow characteristics in a lubricating film for X ~ 1 and 
G ~ 0 carmot be determined solely by introducing corrections to known 
solutions. 
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